

Journal of Engineering and Emerging Technology 2023 Vol. 01, No. 01

www.jeet.unram.ac.id

Kopling Loudspeaker sebagai Alternator Linier Di Mesin Termoakustik (Loudspeaker Coupled as Linear Alternator To Thermoacoustic Engines)

Nurpatria*, Mirmanto, Tri Rachmanto, I M Adi Sayoga, I G Bawa Susana⁵

Universitas Mataram, Fakultas Teknik. Jl. Majapahit No.62, 83125, Indonesia

*Corresponding author: nurpatria@unram.ac.id

(Diterima: 8 Mei 2022, Direvisi: 24 Mei 2022, Diterima: 3 Juni 2022)

ABSTRACT

Low grade energy biomass such as agricultural waste and other solid biomass can be easily and cheaply obtained in rural areas. This type of biomass can be used directly as a heat source for thermoacoustic engines. A specific design of a thermoacoustic engine model has been created using the open source Delta EC simulation software. The engine's special design is on it's hot heat exchanger section, which enables it to harness heat directly from the flue gas flow of low grade biomass combustion. Further simulations are carried out so that the current engine model can be coupled with a loudspeaker model utilized as a linear alternator. This work managed to couple the thermoacoustic engine with the loudspeaker model in both acoustically and electrically terms, and they are succesfully acting as a simple electric power generator model. The efficiency of heat to acoustic energy conversion is 30.71 W. A sum of 6.91 W acoustic energy flows to the loudspeaker, and is converted into 5.70 W of electrical energy, which is equivalent to 82.54% of acoustic to electrical energy conversion. Thus, the overall efficiency of the engine in converting heat into electricity is 9.46%.

Keywords:

Biomass; Delta EC simulation; Electric power generator; Loudspeaker; Thermoacoustic engine

ABSTRAK

Biomassa bergrade energi rendah seperti limbah pertanian dapat diperoleh relatif mudah dan murah di pedesaan. Bahan bakar biomassa jenis ini dapat langsung dipakai sebagai sumber kalor mesin termoakustik. Sebuah model mesin termoakustik berdesain khusus telah dibuat menggunakan software open source simulasi Delta EC. Kekhususan desain mesin tersebut terletak di alat penukar kalor source, yang memungkinkannya menerima kalor langsung dari aliran gas panas hasil pembakaran biomassa bergrade rendah. Energi yang sudah dapat dibangkitkan oleh model mesin termoakustik tersebut belum berdayaguna, karena itu dilakukan simulasi lanjutan agar model mesin terseut dapat dikopel dengan model loudspeaker yang didifungsikan sebagai alternator liner. Dari kegiatan ini telah dapat dibuat sebuah model mesin termoakustik yang berhasil dikopling baik secara akustik maupun secara elektrik dengan loudspeaker, sehingga model dapat berfungsi sebagai pembangkit listrik sederhana. Efisiensi konversi energi kalor ke energi akustik mesin pada suatu set nilai parameter mesin tertentu adalah 11,47%, dengan amplifikasi energi akustik oleh regenerator sebesar 30,71 W. Sebanyak 6,91 W energi akustik mengalir ke loudspeaker, dan dirubah menjadi 5,70 W energi listrik, setara dengan efisiensi konversi energi akustik menjadi energi listrik sebesar 82,54%. Sehingga, efisiensi konversi energi kalor menjadi energi listrik dari model mesin adalah 9,46%.

Kata kunci:

Biomassa; Loudspeaker; Mesin thermoacoustic; Pembangkit listrik; Simulasi Delta EC;

1. Pendahuluan

Potensi energi biomassa negara Indonesia relatif besar, setara 32654 MWe. Dari jumlah tersebut tidak lebih dari 5% yang sudah dimanfaatkan sebagai sumber bahan bakar dalam sistem pembangkitan energi listrik off-grid dan on-grid, (Yudiartono, 2018). Data tersebut menunjukkan bahwa masih terbuka kesempatan sangat prospektif bagi implementasi teknologi apapun yang menggunakan energi biomassa sebagai sumber bahan bakarnya. Dalam beberapa dekade terakhir, telah berkembang jenis teknologi mesin yang relatif baru, yaitu mesin termoakustik jenis pembakaran luar. Secara desain, mesin termoakustik berkomponen sedikit dengan konstruksi sederhana. Melalui perencanaan yang tepat mesin ini dapat dibuat agar mampu memanfaatkan biomassa sebagai bahan bakarnya. Terlebih lagi jika biomassa tersebut tersedia melimpah dalam bentuk limbah pertanian seperti di pedesaan. Mengacu pada beberapa aspek desain dari (Yu et al, 2012) dan (Piccolo A, 2018), telah dimulai studi dengan tahapan pemodelan secara simulasi untuk membangun mesin termoakustik yang berkemampuan memanfaatkan biomassa limbah pertanian sebagai bahan bakar mesin oleh (Nurpatria dkk, 2019). Model mesin termoakustik awal berhasil dibangun dengan efisiensi proses konversi dari energi kalor menjadi energi akustik model ini relatif rendah, yaitu 3,31%.

Model yang berefisiensi lebih tinggi yaitu 7,16 %, berhasil dibangun dan ini berarti terjadi kenaikan efisiensi model sekitar 128%, (Nurpatria dkk, 2020). Kemampuan dari model terakhir ini baru sampai pada tahap pembangkitan energi akustik, dan energi akustik tersebut hanya bersirkulasi di dalam mesin namun belum berdayaguna. Energi akustik yang telah berhasil dibangkitkan dapat diekstraksi dari sirkulasi internal gelombang akustik, kemudian dikeluarkan agar bisa dimanfaatkan, (Abdoulla et al, 2017) dan (Piccolo, 2018). Energi akustik tersebut dapat dikonversi menjadi energi listrik, misalnya dengan generator listrik jenis "alternator linier", yang telah berhasil dilakukan (Hamooh et al, 2019), (Chen et al, 2015), dan (Timer et al, 2018).

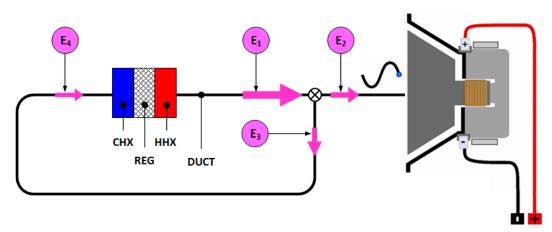
Dalam praktek yang telah berhasil dibuktikan tersebut, "loudspeaker" dapat difungsikan sebagai alternator linier jika disetting sedemikian rupa agar beroperasi secara "reverse acting". Diharapkan desain khusus pada komponen alat penukar kalor yang dapat menggunakan biomassa, energi listrik dapat dihasilkan oleh mesin termoakustik dengan memakai loudspaeker sebagai alternator linier.

2. Metodologi

2.1. Pemodelan Mesin

Skema model mesin yang akan dibangun dalam penelitian ini seperti pada Gambar 1. Dalam gambar ditunjukkan metode pemasangan loudspeaker di model mesin yang sudah ada. Pemasangan loudspeaker dalam penelitian ini dimodelkan dengan pencabangan saluran dari saluran loop mesin. Metode lain memasang loudspeaker adalah menempatkan nya di dalam loop mesin, tanpa percabangan, (Yu *et al*, 2012). Energi akustik E_1 terbagi di titik percabangan menjadi E_2 dan E_3 . Energi E_3 mengalir kembali dalam loop dan menjadi energi umpan untuk regenerator seperti pada model Gambar 1. Sebagian dari energi E_1 mengalir ke loudspeaker sebesar E_2 . Besarnya E_2 tersebut tergantung tidak hanya pada faktor kemampuan loudspeaker secara internal, tetapi juga pada faktor eksternal koneksi mesin dengan loudspeaker, (Chen *et al*, 2015), (Abdoulla *et al*, 2017).

Dalam proses simulasi perlu diperhatikan bahwa loudspeaker memiliki batas kejenuhan fisis mengkonversi energi akustik menjadi energi listrik. Batas tersebut sangat bervariasi tergantung berbagai parameter TSP, (Hamood *et al*, 2019), (Abdoulla *et al*, 2017). Faktor internal lainnya adalah pemodelan yang benar dari pemilihan dimensi fisis loudspeaker. Selain itu, faktor eksternal juga berpengaruh. Diantaranya adalah lokasi percabangan relatif terhadap regenerator,


panjang saluran penghubung dari titik percabangan ke loudspeaker, dan besarnya beban resistor pada terminal keluaran listrik di loudspeaker, (Elferink *et al*, 2019), (THATEA, 2012).

2.2. Pemodelan Simulasi

Pembangkitan akustik oleh regenerator (REG) dinyatakan oleh suku ruas kiri Pers.1 di bagian Real (Re) variabel kompleks untuk gelombang tekanan p_1 , laju aliran volume U_1 , dan faktor gain kompleks g. Suplai kalor Q_h dimasukkan ke alat penukar kalor bertemperatur tinggi (HHX) agar tercipta gradien temperatur (dT_m/dx) relatif terhadap temperatur rendah, yang diinginkan sesuai temperatur lingkungan sebagi sink pada alat penukar kalor bertemperatur tinggi (CHX). Kontribusi penetration depth δ_k dalam persamaan tersebut ada pada suku kompleks $Re[f_k]$. Pengaturan dimensi δ_k yang tepat akan membuat suku $Re[f_k]$ bernilai maksimum. Amplifikasi energi akustik mesin E_1 adalah energi akustik ruas kiri Pers.1 dikurangi disipasi yang timbul dalam regenerator, (Swift, 2001).

$$\frac{1}{2}\operatorname{Re}[gU_{1}\widetilde{p}_{1}] = \frac{1}{2}\frac{1}{T_{m}}\frac{dT_{m}}{dx}\operatorname{Re}[\widetilde{p}_{1}U_{1}]\operatorname{Re}[f_{\kappa}] + \frac{1}{2}\frac{1}{T_{m}}\frac{dT_{m}}{dx}\operatorname{Im}[\widetilde{p}_{1}U_{1}]\operatorname{Im}[-f_{\kappa}]$$
(1)

Energi akustik mesin E_I adalah $E_1 = E_{1o} - E_{1i}$, yaitu beda antara daya akustik yang keluar REG (E_{Io}) terhadap daya akustik umpan loop ke dalam REG, yaitu E_{Ii} yang ditunjukkan sebagai E_4 pada Gambar 1 jika kerugian pada CHX diabaikan.

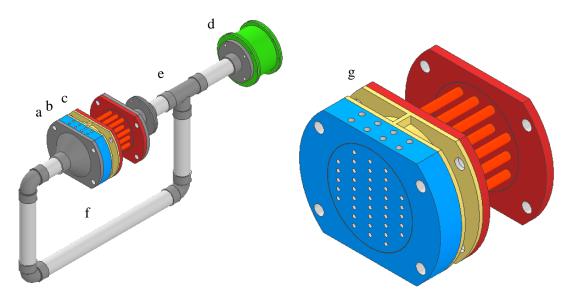
Gambar 1. Skema mesin termoakustik pembangkit listrik

Dengan demikian efisiensi konversi energi kalor menjadi energi akustik di dalam simulasi adalah,

$$\eta_{\rm H} = \left(E_{\rm l} / Q_{\rm h} \right) \tag{2}$$

Jika tuning parameter untuk meng-kopling loop dengan loudspeaker berhasil dilakukan, maka sejumlah energi akustik E_2 akan mengalir ke loudspeaker, sehingga tekanan p_1 dan laju aliran volume U akan menginduksi gerakan translasi koil loudspeaker, kebalikan yang terjadi pada keadaan operasi normal laoudspeaker dimana daya listrik akan menginduksi getaran membran untuk mentransfer energi menjadi gelombang akustik.

$$\eta = (\eta_H \eta_F) \tag{3}$$


Jika konversi energi akustik menjadi listrik dalam laoudspeaker adalah η_E , maka Pers.3 menyatakan efisiensi total kinerja mesin. Semua penyelesaian persamaan, ditambah dengan korelasi parameter lainnya yang tidak ditunjukkan di sini, diselesaikan secara simulasi dengan software open source Delta EC Versi 6.2, (Ward *et al*, 2008).

3. Hasil dan Pembahasan

3.1. Karakteristik Desain

Model mesin hasil simulasi Delta EC yang digambarkan tanpa skala seperti pada Gambar 2. Loop mesin terbentuk dari saluran DUCT, skema Gambar 1, dimulai dari sambungan e menuju ke arah CHX lalu kembali ke sambungan e. Loudspeaker terhubung dengan sebuah segmen duct, yaitu pipa di dalam gambar, dari percabangan e. Material pipa dapat disesuai dengan saat pemodelan.

Porositas CHX relatif sangat kecil, nilainya ada di Tabel 1, sehingga didesain menggunakan blok material besi, dan ini menyebabkan terjadinya pendinginan tak langsung. Metode ini dipakai Yu *et al*, 2012. Sirkulasi air memasuki saluran atas, mendinginkan blok, lalu blok tersebut mendinginkan aliran osilasi bolak-balik partikel udara sebagai fluida kerja mesin. Desain ini secara teoritis mampu menjaga blok CHX tetap konstan pada temperatur 23°C. Ketebalan CHX juga relatif tipis.

Gambar 2. Gambar CAD mesin dan beberapa komponen utama sebagai interpretasi desain, semua dimensi tanpa skala, (a) CHX, (b) REG, (c) HHX, (d) loudspeaker, (e) sambungan, (f) segmen pipa, dan (g) detail desain CHX dan HHX

Desain HHX dibuat berbeda karena pertukaran kalor terjadi antara aliran gas panas hasil pembakaran di luar dengan aliran udara di dalam pipa HHX, sehingga terjadi aliran menyilang tak bercampur. Porositas HHX lebih besar dan panjangnya sekitar 20 kali panjang CHX, sehingga digunakan desain pipa sekali lintas. Temperatur dinding dalam pipa HHX adalah 800 K. Agar gas hasil pembakaran dapat mengaril lancar dan berkontak sempurna dengan dinding luar pipa, diperlukan tambahan komponen pengarah aliran, yang tidak tampak di Gambar 2. Material REG ditempatkan dalam casing yang dijepit antara CHX dan HHX.

3.2. Karakteristik Mesin

Parameter mesin hasil simulasi dirangkum dalam Tabel 1, sedangkan Tabel 2 menunjukkan parameter utama loudspeaker. Hasil simulasi REG memberikan nilai porositas 82% dan radius hidrolik 0,02 mm. Kedua nilai ini dapat dipakai sebagai rujukan jika dipakai *wire mesh screen* (anyaman kawat logam berdiameter tipis) sebagai material pembuat REG. Metode konversi

kedua nilai tersebut menjadi ukuran *wire mesh screen* dapat ditemukan di (Yu *et al*, 2012), (Hamood *et al*, 2019), dan (Abdoulla *et al*, 2019). Dalam kasus pemodelan REG mesin ini, sejumlah *wire mesh* yang dipotong mengikuti bentuk penampang ditumpuk hingga tercapai ketebalan 28 mm.

Energi akustik yang dibangkitkan REG adalah nilai netto, merupakan hasil amplifikasi dari aliran energi akustik yang masuk REG. Energi akustik sesaat sebelum masuk REG adalah 58,19 W. Energi ini dianggap sama dengan energi akustik keluar dari CHX, jika kerugian minor di interface CHX dan REG diabaikan. Setelah keluar REG, energi akustik telah diperbesar menjadi 88,90 W. Karena itu, amplifikasi netto oleh REG seperti pernyataan Pers.1 adalah perbedaan keduanya, nilainya ditunjukkan dalam Tabel 1.

Tabel 1. Parameter mesin hasil simulasi Delta EC

Komponen	Parameter			Model
Mesin	Nama	Simbol	Satuan	2021
Parameter	Energi akustik netto	E ₁	W	30,71
Global	Efisiensi Kalor - Akustik	$\eta_{ m H}$	%	11,47
	Efisiensi Akustik - Listrik	$\eta_{ m E}$	%	82,54
	Efisiensi Kalor - Listrik	η	%	9,46
	Driving Force	(p/p_m)	%	8,8
	Frekwensi	f	Hz	82
	Panjang loop mesin	L	cm	364
Regenerator	Panjang	L	mm	28
	Area	A	mm^2	950
	Porositas	Vol	%	82
	Radius hidrolik	r_h	mm	0,02
HHX	Panjang	L	mm	160
	Area	A	mm^2	950
	Porositas	Vol	%	20
	Kalor input	\mathbf{Q}_{in}	\mathbf{W}	260
	Temperatur	T_{H}	K	800
CHX	Panjang	L	mm	8
	Area	A	mm^2	950
	Porositas	Vol	%	8
	Kalor keluar	Q_{out}	W	210
	Temperatur	$T_{\rm C}$	K	296

Tabel 2. Parameter loudspeaker hasil simulasi Delta EC

Komponen	Parameter			Model
Mesin	Nama	Simbol	Satuan	2021
Loudspeaker	Resistansi koil	R	Ohm	6
	Area	A	mm^2	320
	Induktansi koil	L	Н	$5x10^{-4}$
	Produk (BL)	BL	T.m	30
	Massa transduser	M	kg	$3x10^{-2}$
	Konstanta pegas transduser	K	N/m	1700
	Keluaran arus listrik	I	A	0,62
	Sudut fase keluaran arus	Ph(I)	deg	- 131
	Panjang cabang	L	mm	896

Setting nilai parameter loudspeaker di Tabel 2, resonansi akustik dapat menggetarkan koil laoudspeaker sehingga gerakan translasi yang memotong medan BL dapat membangkitkan listrik 5,70 W, dengan tegangan 18,50 V dengan arus 0,616 A. Penentuan keluaran daya listrik tidak hanya berdasarkan tegangan dan arus, tetapi memperhitungkan juga pengaruh sudut fase dan impedensi, (Ward *et al*, 2008), (Timmer *et al*, 2018).

4. Kesimpulan

Model mesin termoakustik yang dikopel dengan loudspeaker telah dapat bekerja dengan baik. Efisiensi konversi energi mesin tidak terlalu berbeda dibandingkan dengan prestasi kerja mesin lain. Penggunaan bahan bakar biomassa membuka peluang aplikasi desain mesin sebagai prototype alternatif berbiaya operasional murah. Efisiensi konversi energi kalor ke energi akustik mesin adalah 11,47%, dimana energi akustik netto yang dapat dihasilkan regenerator adalah 30,71 W. Energi akustik yang mengalir ke cabang loudspeaker adalah 6,91 W. Energi akustik ini dirubah oleh loudspeaker menjadi lisrik berdaya 5,70 W, dengan efisiensi 82,54%. Efisiensi total mesin dari kalor menjadi listrik adalah 9,46%.

Ucapan Terima Kasih

Disampaikan terima kasih sebesar-besarnya atas pendanaan penelitian oleh Universitas Mataran melalui LPPM Universitas Mataram Skema PNBP UNRAM dengan Surat Perjanjian No.2925/UN18.L1/PP/2021.

Referensi

Yudiartono, 2018, "Outlook Energi Indonesia 2018", BPPT Indonesia

Nurpatria, N., dkk, 2019, "Simulasi parameter geometri regenerator mesin termoakustik", Prosiding SAINTEK 2019 LPPM UNRAM

Nurpatria, N., dkk, 2020, "Peningkatan efisiensi mesin termoakustik", Prosiding SAINTEK 2020 LPPM UNRAM

Yu, Z., Jaworski, AJ., Backhaus, S., 2012, "A low-cost electricity generator for rural areas using a travelling-wave looped-tube thermoacoustic engine", DOI: http://dx.doi.org/10.1243/09576509JPE864

Timmer, M.A.G., de Blok, K, Meer, T.H., 2018, "Review on the conversion of thermoacoustic power into electricity", J. Acoust. Soc. Am. 143 (2), February 2018

Chen, B.M., Jiang, R.H., 2015, "Investigation of the Use of Loudspeaker as a Liner Alternator for Thermoacoustic Applicationy", CISIA 2015, DOI: 10.2991/cisia-15.2015.60

Abdoulla-Latiwish, K.O.A., Mao, X., Jaworski, A.J., 2017, "Thermoacoustic micro-electricity generator for rural dwellings in developing countries driven by waste heat from cooking activities", Energy 134, pp.1107-1120

Hamood, A., Jaworski, A., 2019, "Experimental investigations of the performance of a thermoacoustic electricity generator", ASEE19, E3S Web of Conferences 116, 00025 (2019)

Swift, GW., 2001, Thermoacoustics: A unifying perspective for some engines and refrigerators, Fifth Draft, Los Alamos USA

Ward, B., Clark, J., Swift, GW., 2008, Design Environment for Low-Amplitude Thermoacoustic Energy Conversion (DELTA-EC) Version 6.2, Los Alamos USA

Abdoulla-Latiwish, K.O.A., Jaworski, A.J., 2019, "Two-stage travelling-wave thermoacoustic electricity generator for rural areas of developing countries", Applied Acoustics 151, (2019) 87–98

Nurpatria et al.

Journal of Engineering and Emerging Technology
2023 Vol. 01, No. 01

- Piccolo, A., 2018, "Study of Standing-Wave Thermoacoustic Electricity Generators for Low-Power Applications", Appl. Sci. (2018) 8, 287, DOI:10.3390/app8020287
- Elferink, M., Steiner, T., 2019, "Thermoacoustic waste heat recovery engine: Comparison of simulation and experiment", Proceedings of Meetings on Acoustics, Vol. 35, 065002 (2019), DOI:10.1121/2.0000978
- THATEA, 2012, Thermoacoustic Technology for Energy Applications, ECN Netherlands